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a b s t r a c t

An Eulerian/Lagrangian method for the numerical simulation of incompressible convection flows inter-
acting with complex obstacles is developed in this article. This method is successfully validated on nat-
ural convection cases, a porous medium and the Sierpinski carpet. The ability of the model to take
accurately into account complex topologies allows its application to natural convection in the Lascaux
cave, in order to give information on velocities, temperature and moisture content values and to provide
helpful details to the conservators of the cave.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Designing a numerical model to deal with natural convection in
cavities as well as the conduction into the rock surrounding the
cave is of major importance for the conservation of confined areas.
Moreover, the complex topology of the cave has to be accurately
taken into account by the numerical tool. Two approaches are cur-
rently encountered. On the one hand, using body-fitted unstruc-
tured grid [1,2] the method consists in considering two
subdomains with their own grids. They are connected by a bound-
ary condition corresponding to the interface between the solid and
the fluid media. The solutions in each subdomain are connected
thanks to jump conditions on mass, momentum and energy. The
main advantages of unstructured methods are that they naturally
take into account the complex shape of the objects and they pro-
vide an explicit description of the interface between the media,
in order to apply the real physical jump or transmission conditions.
Concerning the drawbacks of this method, the grid generation is
complex and even impossible due to the strong irregularities of
the fluid–solid interface. On the other hand, another numerical
methodology for treating the fluid–solid interaction is the fictitious
domain approach developed during the last 15 years by many
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authors [3–6] or [7]. This technique is based on the concept of
using a structured grid for dealing with conservation equations
such as the Navier–Stokes or energy equations. The obstacles or
solids are drawn into the structured simulation grid and specific
terms are added to the conservation equations in order to account
for the presence of obstacles. The major advantages of this method
are its readiness to implement, even in three dimensions and its
ability to be integrated to existing CFD tools. Furthermore, it can
deal with moving solids and several approaches have been ex-
tended to high order [7] or [8]. The main drawback is the relative
lack of accuracy in the description of the boundary layers as the
grid is not a priori adapted to the shape of the obstacles.

The management of complex shaped objects, such as those in-
volved in the last section of this paper, requires months of work
with grid generators in order to build unstructured meshes of good
quality in the fluid and solid media. In addition, if moving solid ob-
jects interact with the flow motion, the 3D unstructured grid must
be updated by means of an automatic procedure. This operation is
not possible in certain situations. For all these reasons, we have
chosen to simulate the natural convection in a complex shape cave
using the fictitious domain approach and penalty methods, follow-
ing the works [3,4,9,8].

The Lascaux cave, discovered in 1940 and located in the Dordo-
gne area in France, is inscribed on the Unesco World Heritage List.
It is considered as one world’s major prehistoric caves. Since its
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Nomenclature

Latin letters
a thermal diffusivity ðm2=sÞ
CP specific heat ðJ=kg KÞ
dr augmented Lagrangian parameter ðPa:sÞ
D diffusion coefficient ðm2=sÞ
Dh hydraulic diameter (m)
E characteristic dimension (m)
FC moisture source term (g/kg dry air s)
g gravity vector ðm=s2Þ
h exchange coefficient ðW=m2 KÞ
K permeability ðm2Þ
p pressure (Pa)
T temperature (K)
t time (s)
u velocity (m/s)

Greek symbols
b expansion coefficient ðKÞ
k conductivity ðW=m KÞ
l dynamic viscosity (Pa s)

/ absolute moisture content (g/kg dry air)
q density ðkg=m3Þ
v color function

Subscripts and superscripts
f fluid medium
s solid medium
I interface

Non-dimensional

Ra ¼ q2CP gbDTE3

lk Rayleigh number

Da ¼ hE
k Darcy number

Le ¼ a
D with a ¼ k

qCP
Lewis number

Nu ¼ hE
k Nusselt number

Pr ¼ lCP
k Prandtl number

Ra� ¼ Ra Da ¼ q2CP gbDTE3

lk
K
E2 filtration Rayleigh number

Sc ¼ l
qD Schmidt number
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discovery, several problems have occurred, due to the huge
amount of visitors [10], and their release of vapor and carbon
dioxide by their breath, causing the formation of calcite and the
apparition of green algae and mosses. The Minister of Cultural Af-
fairs (André Malraux) had the cave closed in 1963.

The closure solved some of the problems for a while and the
Lascaux cave art returned to the state it was in the day of the dis-
covery. Since then, prehistorians, archeologists, geologists, hydrog-
eologists, have tried hard to maintain the cavity in the most stable
state possible, using remote metering to record the variations in
temperature, hygrometry, and carbon dioxide gas pressure. The
biological equilibrium remained fragile and in 2001 colonies of mi-
cro-organisms, fungi and bacteria developed on the rock edges and
on the floor. This attack made the authorities and the Minister of
Culture and Communication create an international committee of
the Lascaux cave. This multidisciplinary committee is composed
of archeologists, physicists, geologists, hydrogeologists and conser-
vators working altogether to understand the mechanisms of appa-
rition of the micro-organisms in order to stop their propagation.
Since then, biologists have developed treatments and complex pro-
cesses to eradicate these micro-organisms [11,12].

In the process of time the temperatures and hydric conditions
have often changed [13]. Under the influence of exchanges and en-
ergy transfers with the outside, the system formed by the Lascaux
cave evolved and its state variables have been modified. Climate
change had consequences which occurred before its discovery which
can be observed in the paintings on various places of the cave.
Fig. 1. Definiti
Among the measures taken by the committee, a better under-
standing of the flows in the cave was deemed a paramount
importance, and has induced the creation of a simulation tool,
the ‘‘Lascaux Simulator”. The nonintrusive character of the simu-
lation is one of the major assets of this method. Thus, the
numerical simulation in fluid mechanics is here dedicated to
the conservation of the Lascaux cave. It has previously been
studied by Ferchal [14,15] with the CFD code developed by
EDF on an unstructured grid. The present work constitutes a dif-
ferent view of the problem, using a fictitious domain approach
[16,17].

The numerical methodology used in this paper is first exposed.
The governing equations and the numerical modeling of solid walls
are detailed. Then the method is validated on two different cases,
the natural convection in a porous medium, and the case of Sirpin-
ski carpet. Finally, the method is applied to the study of the natural
convection in the Lascaux cave, and information about the distri-
bution of temperature and moisture contents considering different
thermal configurations is provided.
2. Numerical methodology

2.1. Conservation equations

In the fluid medium (see Fig. 1) Xf , the conservation equations
describing the unsteady incompressible convection flows of a
on sketch.



Fig. 2. Example of Lagrangian grid and corresponding projected solid fraction v (the v ¼ 0:5 isosurface and isocontours of v in a slice are plotted).

2530 D. Lacanette et al. / International Journal of Heat and Mass Transfer 52 (2009) 2528–2542
Newtonian fluid and the evolution of the moisture concentration,
under the Boussinesq approximation, are the Navier–Stokes, en-
ergy and transport of moisture concentration equations written
in terms of velocity and temperature:

q
@u
@t
þr � ðu� uÞ

� �
¼ �rpþ qgþr � ðl½ruþrT u�Þ ð1Þ

r � u ¼ 0 ð2Þ

qCP
@T
@t
þ u � rT

� �
¼ r � krT ð3Þ

@/
@t
þ u � r/

� �
¼ r � ðDr/Þ ð4Þ

It is assumed that k;CP , D and l are constant with respect to T.
The density variations are described by the following linear
expression:

qðTÞ ¼ q0ð1� b½T � T0�Þ ð5Þ

In the solid part Xs, the velocity is assumed to be negligible. Only
conduction effects drive the thermal exchanges in this case. We
have

u ¼ 0 and / ¼ 0 ð6Þ

qCP
@T
@t
¼ r � krT ð7Þ

The boundary conditions for the velocity, temperature fields and
moisture content concentration are the following:

u ¼ 0 and � kf
@Tf

@n
¼ �ks

@Ts

@n
and

/ ¼ 0:5545� T þ 1:8909 on Cs ð8Þ

u ¼ 0 and
@Ts

@n
¼ 0 and / ¼ 0 on Co ð9Þ
2.2. Numerical modeling of solid walls

2.2.1. Management of the fluid/solid interface
The present work aims at proposing a numerical method which

is able to deal with fluid/solid interaction while using structured
grids non conforming to the complex shape of the obstacles. The
main idea is a continuation of the previous works of Caltagirone
et al. [18,3] concerning fictitious domains. The method is struc-
tured as follows:
� the simulation domain X ¼ Xs [Xf which includes both the

fluid and solid zones is discretized with a global structured grid a
priori not adapted to Cs. On this Eulerian grid, standard numerical
methods apply (see below).
� the topology of the fluid/solid interfaces is not explicitly known

on the Eulerian structured grid which doest not fit to Cs. As a conse-
quence, the jump conditions cannot be explicitly implemented in
Eqs. (5)–(9). The fictitious domain approach consists in introducing lo-
cal volume effects in the conservation equations so as to account for
the volume effect of the solid medium in Xs. In a first step, a triangular
Lagrangian grid xf of the solid zones is projected onto the Eulerian grid
(see Fig. 2) by solving a diffusion equations as follows [19]:

Dv ¼ r �
Z

Cs

niðx� xf Þdids ð10Þ

where v is the local volume fraction of the solid, ni is the normal to
Cs; x is a location on the Eulerian grid and di is the Dirac function
indicating the interface. After solving Eq. (10), v ¼ 1 in Xs and 0
elsewhere. The interface Cs between Xf and Xs is defined as v ¼ 0:5.
� function v allows us to locate the solid and fluid part on the

Eulerian grid. A Darcy term is added to the momentum equations
in order to penalize the solid behavior through the conservation
equations. The new penalty Navier–Stokes Brinkman model so ob-
tained, which replaces Eq. (1), reads:

q
@u
@t
þr � ðu� uÞ

� �
þ l

K
u ¼ �rpþ qgþr � ðl½ruþrT u�Þ

ð11Þ

where K ¼ þ1 if v < 0:5 and K ¼ 0 if v P 0:5. To sum up, our ficti-
tious domain method uses penalty terms added to the momentum
conservation equations to model the presence of solid obstacles.

2.2.2. Management of humidity transfer
The humidity transfer is estimated directly on the real Lagrang-

ian surface rather than the projected Eulerian one. It is made of two
steps.

1. The temperature gradient in the normal direction for each sur-
face triangle SI is first calculated as follows:
� a normal vector NI to SI is defined. It is oriented toward the

fluid medium, starting from the barycenter of SI and its
length is the local grid space.

� the temperatures Tb and Tf , respectively, at the barycenter
and in the fluid, i.e. at the edges of NI , are evaluated by lin-
early interpolating the Eulerian field.

� the temperature gradient is directly obtained by
r?TI ¼

Tf�Tb

kNIk
.
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2. A specific penalty term is added in Eq. (4) in order to impose the
moisture content in the cell cut by the air/rock interface:

/nþ1 � /n

Dt
þ unþ1 � r/nþ1 ¼ r � ðDr/nþ1Þ þ B /nþ1 � f ðr?Tn

I Þ
� �

ð12Þ

where B is a penalty coefficient equal to 1040 in the cells cut by
the interface and 0 elsewhere, and f is a function based on an
energetic balance between the heat driven by the conduction
through each triangle and the energy necessary to evaporate
or condensate all the vapor contained in an elementary volume
of the Eulerian grid. The normal temperature gradient to the
interface is r?TI. It is calculated on the Lagrangian interface
and is projected on the Eulerian grid to build f.

2.3. Discretization and solvers

The system of Eqs. (1)–(9) which describes the interaction be-
tween the natural convection in a cavity and the conduction in
the rock is discretized thanks to implicit finite volumes [20] on a
fixed staggered Cartesian Marker And Cell (MAC [21]) grid. In Xf ,
the coupling between pressure and velocity, as well as the incom-
pressibility constraint, are fulfilled by using a minimization algo-
rithm called augmented Lagrangian [22]. The time derivatives are
discretized by first order Euler schemes, whereas the spatial deriv-
atives are approximated by centered schemes.

The implicit discretization of the momentum and energy equa-
tions involves the solving of a linear system AnXnþ1 ¼ Fn by using
an iterative BiCGSTAB solver [23], preconditioned under a Modified
and Incomplete LU (MILU) method [24]. The index n is related to
time nDt for which Dt is the time step. The mass and momentum
equations are first solved by the augmented Lagrangian method
in order to obtain ðunþ1; pnþ1Þ as follows:

k ¼ 0; p0 ¼ pn and u0 ¼ un

Solve
k ¼ kþ 1

qn uk � un

Dt
þr � ðuk�1 � ukÞ

� �
¼ �rpk�1 þ drrðr � ukÞ

� l
K

uk þ qgþr � ðl½ruk þrT uk�Þ

pk ¼ pk�1 � drr � uk

Whiler � uk P �j

ð13Þ

where � is chosen equal to almost zero computer error (� ¼ 10�15

in double precision calculations). At the end of the minimization
procedure, we assume that unþ1 ¼ uk and pnþ1 ¼ pk. The minimiza-
tion parameter dr can be set constant or determined automatically
by analyzing the physical or numerical parameters of the problem
[25,26]. In our simulations, the augmented Lagrangian parameter
dr ¼ 1 as the local variations of density and viscosity are small.
In addition, the permeability is chosen equal to 1040 in the fluid
and 10�40 in the solid. The magnitude of K has no effect on the
efficiency of the iterative solver as the permeability only affects
diagonal coefficients in the linear system. More details on the con-
vergence order and behavior of the penalty method are given for
example in [3].

Then, the temperature Tnþ1 is obtained by:

qnCP
Tnþ1 � Tn

Dt
þ unþ1 � rTnþ1

 !
¼ r � krTnþ1

To finish with, the vapor concentration /nþ1 is obtained by:
/� ¼ /n þ Dt � Bð/� � f ðr?Tn
I ÞÞ

/nþ1 � /�

Dt
þ unþ1 � r/nþ1

 !
¼ r � Dr/nþ1

More information, details and validations about the discretizations
and solvers have been extensively investigated in previous works
[3,27].

3. Validation

3.1. Natural convection in a porous medium

Following the works of Arquis [28], the interest and accuracy of
the Brinkman penalty method can be illustrated by simulating on a
local scale the natural convection in a square cavity, differentially
heated between a cold temperature wall Tc and a hot one Th, in
which cylindrical inclusions are placed following a square shaped
periodical network (see Fig. 3). It is assumed that the conductivity
of the cylindrical obstacle is the same as the fluid. Under the action
of gravity, natural convection flows develop in the cavity between
the cylinders. The main dimensionless parameter of the problem is
the Rayleigh number Ra. The Prandtl number of the problem is as-
sumed to be equal to 1.

It is proposed to consider several configurations in which the
porosity is constant and equal to 0.615 and the number of cylin-
ders N is increased progressively from 42 to 322. Due to the pres-
ence of the obstacles, the flow velocities are decreased and the
cavity behaves as a porous medium. In order to take into account
the effects of the cylinders on the convection, a modified Rayleigh
number, called the filtration Rayleigh number, is introduced. Ra� is
equal to the product between the classical Rayleigh and the Darcy
number. In the following simulations, Ra� is assumed constant and
equal to 122.6.

We consider three convection cases where N of 42; 82 and 322,
are associated to 642; 2562 and 5122 simulation grids, respec-
tively. The stationary results of temperatures, streamlines and
obstacles are presented in Fig. 5. For N ¼ 42, the isotherms are
irregular, demonstrating a different thermal behavior in fluid and
solid media. In this case, a macroscopic analysis of the results is
not possible. On the contrary, for higher values of N, the flow and
temperature isolines are smoother. A macroscopic study is suitable
in these configurations.

A quantitative exploitation of the simulations is interesting by
analyzing the evolution of the global thermal exchanges in the
cavity in terms of Nusselt number Nu. The values of Nu accord-
ing to 1=N are presented in Fig. 4. They all have been obtained
with the penalty Brinkman method, except for 1=N ¼ 0 where
a Darcy model has been used to simulate this case in particular,
assuming a full porous cavity. As a reference, the limit value of
the Nusselt number is obtained by simulating with our model
a porous medium throughout the whole cavity. This case can
be compared to a cavity containing an infinity of cylinder, such
as N ! þ1. It can be observed that when N takes large values,
the asymptotic value of the Nusselt number tends to the refer-
ence value of Nu ¼ 3:574 obtained with the Darcy penalty model
(Ra Da ¼ 122:6).

To sum up, it has been demonstrated that the Darcy penalty
method is able to provide a local description of the interaction be-
tween natural convection flows and obstacles in a closed cavity. In
terms of thermal exchange, the numerical model is accurate and
the reference value of 3.574 of a porous medium is recovered in
terms of Nusselt number. This test case validates the choice of
the Darcy penalty method for simulating the convection flows in
the Lascaux cave which highly depend on the fluid–solid
interactions.



Fig. 4. Evolution of the Nusselt number according to the number N of obstacles in
the cavity.

Fig. 3. Definition sketch of the natural convection in a cavity.

2532 D. Lacanette et al. / International Journal of Heat and Mass Transfer 52 (2009) 2528–2542
3.2. The Sierpinski carpet

Our purpose in this section is to validate the methodology
used to simulate the thermal convection in a 3D cavity comparing
simulations with experimental measurements. In [29], Amine
et al. compare their numerical results for the Sierpinski carpet
case obtained with both experiments and simulations. As the case
is not exactly the same for the two methods, experimental and
numerical results agree concerning the shape, temperature and
velocity profiles. However, the magnitude of the maxima varies
in the 20–30% range. Our aim here is to compare the results in
[29] with our results in order to demonstrate the validity of our
penalty approach.

The Sierpinski carpet is a fractal model composed of squares of
various sizes. Fig. 6 illustrates the first three generations of the
model. The empty cell is a 100� 100 mm2 box. We impose adia-
batic conditions on the upper and lower walls, and a Dirichlet con-
dition of 20 �C and 25 �C on the left and right walls. For all
simulations, the liquid used has the following properties:
l ¼ 0:0815 kg=ðm sÞ; q ¼ 857 kg=m3; CP ¼ 1880 J=ðkg KÞ and
kf ¼ 0:132 W=ðm KÞ. Hence, the Prandtl number Pr is equal to
1160. Obstacles are in plexiglas for which the thermal conductivity
is ks ¼ 0:19 W=ðm KÞ.

3.2.1. First generation
The obstacle is located between 33:3 mm 6 x 6 66:7 mm and

33:3 mm 6 y 6 66:7 mm. 2D and 3D simulations are first per-
formed. Fig. 7 shows the vertical velocity profile VzðxÞ from exper-
iments [29] and our 2D (1002 mesh) and 3D (703 mesh with
z ¼ 50 mm) computations. Results for 2D configuration are very
similar to the numerical simulations of Amine et al. (not repre-
sented) which are relatively far from experiments. In this paper,
the authors have some suppositions about the differences between
experimental and numerical results. First, contrary to their initial
assumption, the lower and upper walls are not really adiabatic.
Amine et al. have tried to change the upper and lower boundary
conditions to the Stefan condition. The gain for Vx was counterbal-
anced by a loss of quality for Vz. Another difference between exper-
iments and simulations lies in the real size of the obstacles used in
experiments. Commercially available bars used for the experiment
had dimensions changing by steps of 1 mm.

The box used for the experiment has a depth of only 85 mm. In
our opinion the flow can have some 3D structures that cannot be
represented by 2D simulations due to confinement effects. As can



Fig. 5. 2D simulation of the natural convection in a cavity filled with various amounts N of cylinders-N ¼ 4� 4 with a 642 grid, N ¼ 16� 16 with a 2562 grid, N ¼ 32� 32
with a 5122 grid-left column: streamlines, right column: temperature profiles.

Fig. 6. Sierpinski carpet of 1st, 2nd and 3rd generation.
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be seen on Fig. 7, the results obtained with our 3D simulation are
closer to the experiment. The difference between the 2D and 3D
flow is then studied. Fig. 7 shows the evolution of Vx; Vy and T
along the y axis for z ¼ 10 mm and x ¼ 50 mm. The velocity Vx



Fig. 7. 3D simulation for the Sierpinski carpet of 1st generation. Horizontal velocity profile VxðzÞ at x ¼ 50 mm for experiments and numerical simulations (top), values
VxðyÞ; VyðyÞ; TðyÞ for z ¼ 10 mm and x ¼ 50 mm (bottom).
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and the temperature T along the y axis for y � 42:5 mm are quite
stable. This is observed in Fig. 9. The transverse velocity Vy is about
two magnitudes smaller than Vx. Hence, the flow is mainly 2D but
the effect of the 3D structures is not negligible.
3.2.2. Second generation
A new set of eight additional blocks is considered. The new

obstacles are quite small, but the mesh is not chosen to match per-
fectly with obstacles. The purpose here is to demonstrate the inter-
est of our penalty method even if obstacles do not match the grid.
Fig. 8 compares the vertical velocity profile VzðxÞ at z ¼ 17 mm ob-
tained with experiment and simulation. The 2D (with a 1502 mesh)
and 3D (with a 703 mesh) simulations are close to the results ob-
tained by experiment. However, the 3D calculation provides a bet-
ter agreement.

Fig. 8 shows the velocity profile VxðzÞ at x ¼ 50 mm. As for the
first generation carpet, the correspondence between experiment
and simulations is not very good for 2D, even if the results ob-
tained with the 3D simulation on a relatively coarse grid are closer
to experiment. The results with an additional 2D simulation with a
3002 mesh are slightly improved.

Streamlines and sensors position is shown in Fig. 9. As in [29],
we observe a negative velocity Vz between the 2nd and 3rd lower
obstacles.
3.2.3. Conclusion for the Sierpinski carpet
The experiments of Amine et al. [29] and our numerical simula-

tions have been compared. Even on coarse grids, the main struc-
tures of the experimental flows have been well reproduced by
our methodology and it has been demonstrated that the 3D char-
acter of the flow improves the accuracy of the simulations, com-
pared to the 2D computations of Amine et al. However, for
various reasons, for instance the inaccurate modeling of the real
boundary conditions, differences on velocities have been observed.



Fig. 8. Sierpinski carpet of 2nd generation. Horizontal velocity profile VzðxÞ at z ¼ 17 mm (left), horizontal velocity profile VxðzÞ at x ¼ 50 mm (right) for experiments and
numerical simulations.
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4. Application to the Lascaux cave

The numerical methodology is applied here to the study of the
natural convection in the Lascaux cave. The accurate description of
the cavity allows a fine analysis of the flow as well as the moisture
content distribution in the cave.

4.1. Initial conditions

The reversal time has been evaluated to 1 h, thus the total sim-
ulation time has been fixed to 7 h. The boundary conditions are
steady, considering the temperature in the cave is stable during
7 h. Nevertheless, the flow is unsteady, due to the complex geom-
etry and the thermal gradients, as it can be checked in Fig. 10.

4.1.1. Geometry
A three-dimensional survey of the Lascaux cave was made by

the land surveyor Perazio using laser scanning. Triangular surface
elements of each object interacting with the flow motion are gen-
erated. A detail of this surface is shown in Fig. 11. In the following,
the gravity acceleration is directed towards the Y-axis.
The Lagrangian description of the solid objects is projected onto
the fixed Eulerian flow grid as detailed in Section 2.2. The Eulerian
view of the geometry as well as reference marks of the Lascaux
cave are given in Fig. 11. The global domain of computation is com-
posed of 3.5 million points.

4.1.2. Thermal conditions
Concerning the Rayleigh number, simulations on a differen-

tially heated square cavity are achieved in order to get the
evolution of the Nusselt number with the Rayleigh number
and to compare the values of velocities with the theoretical
ones.

The order of magnitude of the velocity in the boundary layer for
high Rayleigh numbers is given by V0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTDh

p
. The Table 1

shows a comparison between simulated values of velocity and the-
oretical ones for a given Rayleigh number.

This comparison is valid for a Rayleigh higher or equal to 105, at
this point the boundary layers are separated. The order of magni-
tude of the velocities is the same, the CFD code used as a basis
for the simulation in the Lascaux cave gives classical results of nat-
ural convection.



Fig. 9. Isosurfaces of temperature for 3D simulations (top), streamlines for the Sierpinski carpet of 2nd generation (bottom).
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The Nusselt numbers corresponding to the simulated velocities
have been calculated on a 256� 256 Chebyshev grid and compared
to reference spectral solutions [30] in Table 2. The calculated val-
ues are in good agreement with the benchmark results. Plotting
its evolution with the Rayleigh number, the relation (14) is found
for a differentially heated square cavity.

Nu ¼ 0:17Ra0:2821 ð14Þ
For a vertical plate, the evolution of the Nusselt number follows

the relation (15) [31]:

Nu ¼ 0:59Ra0:25 ð15Þ
This expression is slightly different from the relation (14) due to

the containment of the geometry, the boundary layer is finite in the
cavity whereas it is considered as infinite in the vertical plate case.
Nevertheless the expression (14) is characteristic of a separated
boundary layer flow.
In the Lascaux cave, in the thermal configuration of 1981, and
without human disturbances, the measured velocities are approx-
imately 5� 10�2 m=s. Referring to the previous relation, an equiv-
alent Rayleigh number of 108 can be given, which corresponds to a
differentially heated cavity. This number indicates a laminar flow
regime.

The Lewis, Prandtl and Schmidt numbers are, respectively,
equal to 1.015, 0.71 and 0.721. The heat, mass and momentum dif-
fusion are of the same order. Thus, the characteristic time and
space scales of the involved physical phenomena are compatible;
the same time steps and the same grid can be used for all the equa-
tions. Our unsteady and deterministic modeling strategy is con-
firmed by the previous remarks.

The initial conditions in temperature are calculated on a one-
dimensional heat conduction model in the floor, based on the tem-
perature measured by Météo France [32] during more than 50



Fig. 10. Evolution of temperature (left) and vertical component of the velocity (right) as a function of time.

Fig. 11. Detail of the triangularized surface on the Lagrangian grid (top), topology of the Lascaux cave as considered in the simulation – several reference marks (bottom).
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Table 1
Comparison between theoretical V0 and simulated V values of velocities in the boundary layer of a differentially heated square cavity.

Ra 102 103 104 105 106 107 108

V0 (m/s) 1:8610�2 2:7410�2 4:0210�2 5:910�2 8:610�2 1:2710�1 1:8710�1

V (m/s) 8:710�4 3:810�3 9:410�3 1:510�2 2:210�2 3:310�2 4:910�2

Table 2
Comparison between reference Nuref and our simulated values Nu of Nusselt numbers
in the boundary layer of a differentially heated square cavity.

Ra 102 103 104 105 106 107 108

Nuref [30] 4.521 8.8252 16.523 30.225
Nu 1.0015 1.1178 2.2448 4.5217 8.8252 16.523 30.225
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years above the cave, and those taken in the cave since 1963. A
computerized system using a remote metering has been set up in
the cave to record the variations in temperature, hygrometry and
carbon dioxide gas pressure.

Two climatic configurations are chosen, corresponding to two
different periods, September 1981, during which the cavity re-
mains in a stable state, and December 1999, before the work of
replacement of the air treatment machine [33]. Profiles of temper-
ature are given in Fig. 12 as a function of depth. These two periods
are representative of two very different configurations. September
1981 represents the typical behavior of the 1980s, while December
1999 corresponds to the 1990s and early 2000s, whatever is the
season in the year.

Fig. 13 shows the different distribution of temperature depend-
ing on the climatic configuration along the Y direction.

In September 1981, the slope of temperature is positive, inside
the cave the vaults are colder than the cave floor. In December
1999, the slope is negative, the cave floor being colder than the
vaults.

Once the temperature gradient is introduced in the calculation
domain (including the cave and the surrounding rock) the flow in-
duced by natural convection is established in the cavity.

4.1.3. Physical characteristics
The humidity is initialized to a value of 98% of relative moisture

content in the whole cave. The calculations are made on the abso-
lute moisture content, related to the temperature at each point.
The diffusion coefficient of the moisture in air is D ¼ 2:18�
10�5 m=s.
Fig. 12. Temperatures following a one-dimensional heat conduction model in the
rock as a function of depth.
The characteristics of the rock and air are the following:
qs ¼ 1800 kg=m3; CPs ¼ 1000 J=kg K; ks ¼ 1 W=m K; qa ¼ 1:1768
kg=m3; la¼1:85�10�5 Pa s; CP a¼1006 J=kg K; ka¼ 0:0263 W=m K.

4.2. Results and analysis

The simulation is dedicated here to measure the impact of the
local outside climate change on the management of the climate
in the cave. Between 1965 and 1981, the temperature gradient in
the cave met the requirements of the operational plan as set out
by the Scientific Commission. In winter, the air temperature in-
creases from the surface to the lower areas of the cave, whereas
in summer this order is maintained artificially by deliberately low-
ering the air in the Machine Room, located before the Great Hall of
the Bulls. Since 1981, temperature distribution changed, tempera-
tures in the lower parts of the cave became lower than the mean
surface temperatures (the thermal inertia of the ground increases
as its thickness increases). The natural temperature gradient is in-
verted. This phenomenon is independent of the artificial control
system of the cave and is related only to the outside weather
pattern.

The temperature distribution in the cave is homogeneous in the
thermal configuration of September 1981, as it can be seen in
Fig. 14, where are exhibited zones of convective currents. The
mean velocity values are approximately 10�2 m=s. Whereas in
December 1999, in Fig. 14, the temperature is stratified, and no
major convection current is noticed, due to the inversion of the
temperature gradient between the two dates (Fig. 13). In this case,
velocities are 100 times lower, around 10�4 m=s.

One of the major problem concerning the conservation of the
Lascaux cave is its evolving state. A porous rock in equilibrium
with a humid atmosphere is classically more or less saturated with
water. Under certain conditions, the water vapor contained in the
air present in the network of rock pores can condense. This liquid
water is fixed by capillary action in the smallest pores, the pores
for which the radius is less than a function of the relative moisture
of the air. The condensed water contained in the pores is aggressive
and a chemical equilibrium is reached by dissolution of carbonate
minerals in the rock. Once saturated, this water remains inert as
long as the atmospheric pressure, the temperature and the partial
pressure of carbon dioxide is unchanged. When this equilibrium is
broken, a drop would evaporate and this process would then result
in precipitation of calcite. The condensation–evaporation cycle can
occur repeatedly and lead to a loss of carbonates from the porous
matrix, causing a major issue of conservation. These observations
have demonstrated the need to avoid creating conditions in which
rock dissolution and calcite deposition are promoted and to strive
to maintain the most stable possible air conditions, while taking
into account the natural rhythms of the cave.

The aim of the simulation is to give information about the pre-
cise location of the condensation risk zones. The case presented
here corresponds to the configuration without anthropogenic ef-
fects. It is meant to serve as a basis for further studies, as the intro-
duction of a machinery, human presence, and hot and cold points.

The moisture content distribution on the walls of the cave for
the two climatic conditions described before is given in Fig. 16.
Its distribution in a view of the right gallery, from the lateral Pas-
sage towards the Chamber of Felines for the two previous climatic



Fig. 13. Visualization of the temperature profiles for both climatic configurations, September 1981 (a) and December 1999 (b).
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configurations is given in Fig. 17. In the case of September 1981
(Figs. 16 and 17) the absolute moisture content is higher in the
vaults than on the floor, whereas in December 1999 (Figs. 16 and
17) the moisture is concentrated in the floor. This accurate descrip-
tion allows to know the places where the condensation risk is high-
er, before any introduction of external disturbance. The slice
concerning the right gallery shows the spatial evolution of the
absolute moisture content depending on the thermal configura-
tion. In 1981, there are homogeneous zones, while in 1999, we
found layers of different absolute moisture contents, due to the
inversion of temperature.

Moreover, the climatic configuration of December 1999 corre-
sponds to a higher global absolute moisture content than the one
of September 1981.

The distribution of temperature and their values directly influ-
ence the moisture content field. In September 1981, the vaults are
colder than the floor, inducing a concentration of moisture in the
vaults with a higher value. In December 1999, the distribution of
temperature is reversed, thus the distribution of moisture is also
reversed, following the value of temperature. Nevertheless, inside
the cave, concentration lines do not follow iso-temperatures, as it
Fig. 14. Temperature distribution on a view of the right gallery, from the lateral Passage
which V � 10�2 m=s (top) and December 1999 in which V � 10�4 m=s (bottom).
can be observed in Fig. 18. The moisture content is transported
by the air.

Furthermore, the inversion of temperature implies a drastic
modification of natural convection, and of the intensity of the
velocities. Indeed, in September 1981, the air flows from the floor
to the vaults increase the moisture concentration in this zone,
whereas in December 1999 the very low velocities lead to a stag-
nation of the layers of moisture, on the floor of the cave.

The convective currents are closer studied in Fig. 15. A slice taken
from the right part of the cave, in the Main Gallery, presents the nor-
malized velocity and several streamlines. The velocity is higher on
the walls, and distinct convective currents can be observed. A differ-
ent view of the situation is also presented in this figure, virtual par-
ticles are released in the right part of the cave, and their trajectory is
related to the temperature by the color of the ribbon. The natural
convection occurs both from the ground to the vaults and from the
Great Hall of the Bulls to the end of the Main Gallery. The resulting
currents are complex and fully three-dimensional, with a general
convection from the lateral Chamber of Felines towards the Lateral
Passage, and several smaller ones, isolated and corresponding to a
convection going from the ground to the vaults.
towards the Chamber of Felines for the climatic configuration of September 1981 in



Fig. 15. Velocity distribution on the right gallery of Lascaux cave for the climatic configuration of September 1981, on a slice with the convective currents in red (top) and on a
general view with the trajectory of a virtual particle on a ribbon colored with the temperature of the air crossed (bottom).
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Finally, these numerical results have been validated by observa-
tions in the cave at the two climatic periods. In 1981, no major
problem was noticed, whereas in the late 1990s and early 2000s,
Fig. 16. Absolute moisture content on the walls of the cave for the climatic
a spread of micro-organisms caused conservation issues. It can
be assumed that the consequences of the increase and reverse of
temperatures, i.e. drastic decrease of velocities and increase of
configuration of September 1981 (top) and December 1999 (bottom).



Fig. 17. Absolute moisture content on a view of the right gallery, from the lateral Passage towards the Chamber of Felines for the climatic configuration of September 1981
(top) and December 1999 (bottom).

Fig. 18. Superposition of temperature and concentration distribution on a view of the right gallery, from the lateral Passage towards the Chamber of Felines for the climatic
configuration of December 1999.
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absolute moisture content, implied a stagnation of the air among
the cavity and favored the development of micro-organisms.

5. Conclusions

An Eulerian/Lagrangian method for the numerical simulation of
incompressible convection flows interacting with complex obsta-
cles has been successfully validated on several natural convection
cases, then applied here to the conservation of the Lascaux cave.

It has been shown in this article that a fictitious domain ap-
proach method coupled to a Lagrangian grid of obstacles allowed
the correct description of the interaction between the natural con-
vection flows and these obstacles. For example, a cavity filled with
a large amount of cylinders shows the thermal comportment of a
porous medium. Compared to experiments of natural convection
(Sierpinski carpet) interacting with obstacles set according to frac-
tal patterns, experimental measurements are found in good agree-
ment with the penalization method with a precision lower than
20%. It can be due to the fact that the numerical boundary limits
are slightly different than the experimental ones. Moreover, it
has been pointed out that the two dimension hypothesis was not
entirely valid and that three dimension simulations brought better
results.

Concerning the application to the Lascaux cave, the article pro-
vided the first simulations of the entire geometry of the cavity,
with a fictitious domain approach method. The results are con-
firmed by the observations made in the cave: it is more confined
in the present thermal configuration than in the 1980s. The climate
change made the cave more sensitive to disturbances. For example,
the influence of humans entering the cave will be more devastating
for the paintings in the present configuration than before.

Numerical perspectives are numerous. Higher order penaliza-
tion will be implemented, by a technology currently under devel-
opment, in order to better take into account the complex
geometry of the objects at a scale lower than the grid. Our purpose
is also to integrate moving obstacles in our simulations in order to
take into account the impact of the moving of a human visiting the
cave for example.
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